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What genes have similar function?
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Patients

What patients have similar prognoses?
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Cancer Genomics Cross-Lab Meeting
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Clustering

● Given data points, we want to “maximally separate” them

○ Low intra-cluster (i.e., within cluster) pairwise distances

○ High inter-cluster (i.e., across clusters) pairwise distances

● Generally, we want to try to minimize the number of clusters
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Supervised vs. Unsupervised Learning

● Previously, we looked at the classification problem

○ Given labeled points, train a computer to classify new data

○ That was an example of supervised learning (we know labels)

● Clustering is an example of unsupervised learning

○ We don’t know labels or anything like that in advance

○ We want the computer to learn the underlying structure of the data
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Legolas Frodo Aragorn GaladrielBard

Starred in a Fast & Furious Movie

Clustering is subjective!

We need to define a
pairwise distance function!
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Defining a Pairwise Distance Function

● We need to define a pairwise distance function

○ Let u and v denote two objects from the universe of possibilities

○ D(u,v) denotes the distance between u and v

○ E.g. Euclidean distance

● We can alternatively define a similarity function (and negate it)
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Desirable Properties of a Clustering Algorithm

● Scalability (in terms of both time and space)

● Ability to deal with different data types

● Minimal requirements for domain knowledge to determine inputs

● Interpretability and usability

● Optional: Incorporation of user-specified constraints
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● Partitional: Construct partitions and evaluate them by some criterion

● Hierarchical: Create a hierarchy using some criterion

○ A hierarchical clustering can be “cut” into a partitional clustering
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Bottom-Up Hierarchical Clustering

How do we know which clusters are closest??
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Computing Distances Between Clusters

● Given our pairwise distance function D, we know how to compute the 

distance between two individual objects u and v

○ It’s just D(u,v)

● How do we compute the distance between two clusters A and B? 

○ Average distance between any element u in A and v in B

Something else?
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Soft vs. Hard Partitional Clustering

● In a hard clustering, each point is assigned to a single cluster

○ What about if a point looks like a mix of clusters?

● In a soft clustering, each point is partially assigned to multiple clusters
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Some Common Clustering Algorithms

● K-means Clustering: Cluster points into k clusters

○ Need to specify k (or can try multiple different values)

● UPGMA: A common bottom-up hierarchical clustering algorithm

● Gaussian Mixture Models: Fit a mixture of distributions, and assign 

each point to its closest distribution


